NCEP & CPC Update

Craig S. Long, A.J. Miller, R. Lin, S. Zhou, T. Beck, J. Wild NOAA/NWS/NCEP/Climate Prediction Center
M. Iredell, S. Moorthi, K. Campana
NOAA/NWS/NCEP/Environmental Modeling Center
L. Flynn, S. Kondragunta, D. McNamara
NOAA/NESDIS

NCEP Upgrades and Initiatives

- Model horizontal resolution increased to T382/L64. (2004)
- AQUA-AIRS radiances assimilated. (May 2005)
- Model concept changes
 - Single system, single analysis, single verification
 - ESMF compatible superstructure
 - **Earth System Modeling Framework**
- New ozone P/L code implemented. (Aug. 2006)
- Hybrid (sigma-pressure) ready
- New IBM computers being installed this Fall 2006.
- JCSDA funded projects implemented.
 - Surface emissivity model for snow and ice
 - Ozone P/L code
- Global Ensemble Forecasts implemented (Aug 2005)
 - T120/L64 14 runs per cycle out to 16 days.
- Climate Forecast System

NCEP Future Installments and Initiatives

- Analysis and Observations
 - Gridpoint Statistical Interpolation (GSI) Analysis
 - SSM/I radiances (replaces retrieved wind speeds, adds total column water vapor)
- Forecast Mode
 - •Ice shelf physics
 - •Hybrid sigma-pressure vertical coordinate

GFS hybrid levels (by height)

NCEP Mission Requirements & Forecast Suite Elements

Suite Elements	Global NWP	Meso NWP	Fire Wx Rapid Update Reg. Hurricane	Air Quality	Global Ensembles	Meso Ensembles	Real Time Ocean	S/I Climate
NCEP	Х	X	Х	X	Х	X	Х	Х
UKMO	Х	X		X		Х	Х	
ECMWF	Х				Х			Х

AIRS Radiance Assimilation Impacts

Fig. 4. 500-hPa Z anomaly correlations for the GFS with (Ops + AIRS) and without (Ops) AIRS data, Northern Hemisphere, January 2004.

Fig. 2. 500-hPa Z anomaly correlations for the GFS with (Ops + AIRS) and without (Ops) AIRS data, Southern Hemisphere, January 2004.

Fig. 3. Daily 500-hPa Z anomaly correlation for 5-day forecasts for the GFS with (Ops + AIRS) and without (Ops) AIRS data, Southern Hemisphere, January 2004.

NRL P/L Code Impacts

Operational

Parallel

NRL P/L Code Impacts

NRL P/L Code Impacts

CPC Long Term Data Sets

- SSU/AMSU Temperature Climate dataset.
 - Collaboration with John Nash (UKMO).
- SBUV/2 Total Ozone data set.
 - Combined several NASA & NOAA SBUV(/2) obs.
 - Version 8
- SBUV/2 Profile Ozone data set.
 - Combined several NASA & NOAA SBUV(/2) obs.
 - Version 8

Registration of Conf.

Global Average 70N-70S

All available AMSU channels (9-14) are used to replicate the SSU channels.

SSU and AMSU Channel Weighting Functions

CPC & NESDIS SBUV/2 Data Sets

- Currently three SBUV/2 instruments are working operationally.
 - NOAA-16, NOAA-17, NOAA18
 - NOAA-16 Equator crossing time is drifting to later times.
 - NOAA-17 & NOAA-18 still have near stable Eq crossing times.
 - NOAA-18 calibrations coefficients have just been modified.
 - N18 now is in close agreement with N17
 - NOAA-18 and NOAA-17 have nearly the same ozone hole size.
 - Version 8 total ozone and profile products will be operationally produced by NESDIS in 2007.

2006 Ozone Hole Update

- Relatively large ozone hole
 - \sim 23-24 million sq kilometers.
 - Little wave activity.
 - Late or reduced subsidence from above may extend the longevity of the ozone hole.

2006 Ozone Analyses from N17 & N18 SBUV/2

Meridional Heat Flux

Wave 1, 2, & 3 Amplitudes for SH High Latitudes

2006 Ozone Hole Size

Areas of Various Indicators

Zonal Mean Temperatures and Anomalies

Time Series of 2 hPa Zonal Mean Temperatures

South Pole Temperature Time Series

Ozonesonde Profiles Showing Erosion of Ozone in 12-25 km region

<u>Time Series of Total and Partial Column Ozone</u> from South Pole Ozonesondes

Fini